If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-t^2+120t=1600
We move all terms to the left:
-t^2+120t-(1600)=0
We add all the numbers together, and all the variables
-1t^2+120t-1600=0
a = -1; b = 120; c = -1600;
Δ = b2-4ac
Δ = 1202-4·(-1)·(-1600)
Δ = 8000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8000}=\sqrt{1600*5}=\sqrt{1600}*\sqrt{5}=40\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-40\sqrt{5}}{2*-1}=\frac{-120-40\sqrt{5}}{-2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+40\sqrt{5}}{2*-1}=\frac{-120+40\sqrt{5}}{-2} $
| 9m-2=51 | | x+105+x+37=132 | | x+105+x+37=133 | | x+x^2=0.28 | | x+x^2=28.8 | | 3e=18-3e | | 10m=3m-7 | | 8a^2+16a+18=-5 | | 3+(3x+5)=2x+14 | | 3(3x+5)=2x+14 | | 180=(2x+45)+(3x+60)+40 | | 40=3x+60 | | x+(0.03*x)=123920 | | O=6z-11 | | 4x+2=25+180 | | 3x+2=2x+252 | | 6x=4x=-22 | | 12x=98.8-7x | | 5x=125x+1 | | 2n+8-3n=-30 | | 20=120-x/2 | | 136=4(6+7x) | | x-4+12=-8 | | 3^x-3^x=65 | | -7x+4x+2=-10 | | 4y^2-81y+315=0 | | 4x-57=43-3x | | (2a+62)+(54-1a)+(5a-20)=180 | | 30000x21=x | | 14=2*3.14*r | | 10-2=3x+8 | | 1200+400x=6300 |